Concepto y partes de una ecuación de primer grado.

Una ecuación es una igualdad entre dos expresiones algebraicas. Por ejemplo
x+1=6
La letra x es la incógnita de la ecuación y representa al número desconocido que hace que la igualdad sea verdadera. Resolver la ecuación consiste en encontrar este número, llamado solución de la ecuación.
La solución de la ecuación anterior es 5 porque al escribir 5 en el lugar de x se obtiene una igualdad cierta:
5+1=6
Una ecuación es de primer grado cuando
  • La incógnita no tiene exponente. Es decir, siempre aparece como x o cualquier otra literal (a, b, c, etc.) y no de otra forma como x²
Algunas cosas a tener en cuenta:
La incógnita sí puede ir precedida de un número llamado coeficiente, por ejemplo, 2x, pero este número sólo multiplica a la incógnita: 2x significa 2⋅ x, esto es, 2 veces x.
En las ecuaciones tenemos dos tipos de monomios: números y números acompañados por la incógnita x. Como son distintos, las sumas y las restas deben realizarse por separado.
Puede ser útil considerar que los números sin la x son peras y los que van acompañados de x son manzanas. Está claro que no podemos sumar peras y manzanas porque son frutas distintas, pero sí podemos sumar peras con peras y manzanas con manzanas.
Ejemplos:
Podemos sumar 11 y 22 porque son del mismo tipo (números):
1+2=3
1 pera + 2 peras = 3 peras
No podemos sumar 1 y 2x  porque no son del mismo tipo, o dicho de otra manera, no son términos semejantes.
No podemos sumar 1 pera y 2 manzanas.
Podemos sumar 4x y 3x porque son del mismo tipo:
4x+3x=7x
4 manzanas + 3 manzanas = 7 manzanas
3 + x −2= 3+1
En el lado izquierdo tenemos los números 3 y -2 que se pueden restar. Los quitamos y escribimos el resultado de la operación: 3-2 = 1

1 + x = 3 + 1

Hacemos lo mismo en el lado derecho con 3 y 1 (sumando):

1+x=4

Ahora es el momento de cambiar de lado algunos elementos. Dejaremos las incógnitas en el lado izquierdo.
Los elementos que suman en un lado pasan restando al otro y viceversa.
El 1 de la izquierda está sumando, así que lo escribimos en la derecha restando:

x=4−1

Restamos el 4 y el 1 de la derecha:
x = 3
Comprobamos en la ecuación simplificada y nos queda:
1 + x = 4, sustituyendo el 3  en la x, tenemos: 1 + 3 = 4



2x + 4 + 3x −1 = 7x −2 − x
En el lado izquierdo sumamos 2x y 3x:

5x+4−1=7x−2−x

En el derecho, sumamos 7x  y x:

5x+4−1=6x−2

En el lado izquierdo sumamos 4 y −1:

5x+3=6x−2

Pasamos el 6x de la derecha a la izquierda restando:

5x+3−6x=−2

Sumamos 5x y −6x:

3x=−2

Pasamos el 2 de la derecha a la izquierda sumando:

3−x+2=0

En el lado izquierdo sumamos 3 y 2:

5x=0

Pasamos la x a la derecha para que sea positiva:

5=x

La solución de la ecuación es 5, x = 5.

Lenguaje algebraico

El lenguaje algebraico es el lenguaje matemático que utiliza números, letras y signos matemáticos (como +, -, ·, etc.). En este apartado vamos a ver la traducción del lenguaje natural (español) al lenguaje algebraico.
A la hora de resolver un problema, tenemos que poder plantear el problema en lenguaje matemático para poder resolverlo.
Si x es un número, su doble se calcula multiplicándolo por 2. Por tanto, el doble de x es 2⋅x, que es lo mismo que 2x.
Del mismo modo, el triple, cuádruple, quíntuple son
·         3x (triple)
·         4x (cuádruple)
·         5x (quíntuple)

Fracción (mitad, cuarta parte...)

La mitad de un número se calcula dividiendo entre 2. Luego la mitad de x es  x/2
Esta operación es la misma que multiplicar por un medio:(1/2)x

De forma similar,
·     la tercera parte de x es x/3
·     la cuarta parte de x es x/4
·      las dos terceras partes de x son: (2/3) x
·      las tres quintas partes de x son: (3/5) x

Porcentajes

El tanto por ciento de un número se calcula multiplicando por el porcentaje y dividiendo entre 100. Así,
·     el 20% de x es  (20/100) x
·     el 50% de x es (50/100) x
·    el 85% de x es  (85/100) x


Problemas

1.- Un número más 16 es igual al triple de dicho número. ¿Qué número es?

El número que buscamos es x. Su triple es 3x. Como el número x más 16 es igual al triple de x, la ecuación es
x+16=3x
Pasamos la x de la izquierda restando a la derecha:
16=3xx
16=2x
El coeficiente 2 de x pasa dividiendo al otro lado:
x= 16/2
x=8
El número buscado es 8.

2.- ¿Qué dos números consecutivos suman 27?

Si x es el menor de los números, su consecutivo es x+1. Como la suma de los dos tiene que ser 27, entonces
x+x+1=27
Resolvemos la ecuación:
2x+1=27
2x=27−1
2x=26
x= =13

Por tanto, los números son 13 y 14.

3.- Si Rosa tiene 3 años más que su hermana y sus edades suman 17, ¿qué edad tiene Rosa?

4.- Calcular la edad de Pablo si dentro de 12 años su edad será el triple de la que tiene ahora.

A continuación, resuelvan otras 5 ecuaciones de la misma dificultad que las anteriores para seguir practicando.

5−3x=x+1

5−x=x−1

4xx=2x−5

3x−3=x+3

5x−2=3x+1

Para una mayor comprensión consulta los siguientes links:



https://www.youtube.com/watch?v=jUV068nwxM4

ATENCIÓN! LA ENTREGA DE LAS ACTIVIDADES CORRESPONDIENTES DEL LIBRO Y CUADERNO SERÁ PARA EL 20 Y 21 DE ABRIL













Comentarios

  1. Hola buenas noches disculpe profesor estos apuntes irían en la libreta de matemáticas?

    ResponderBorrar
  2. HOLA BUENAS TARDES PROFESOR FERNANDO LO QUE VAMOS A RESOLVER ES LO QUE DICE PROBLEMAS

    ResponderBorrar
  3. Hola profesor lo que esta ahi lo vamos a anotar en la libreta

    ResponderBorrar

Publicar un comentario

Entradas más populares de este blog

Classroom y WhatsApp

Guía para la obtención de correo electrónico a estudiantes

Enlaces de videos de apoyo